


default search action
20th ICML 2003: Washington, DC, USA
- Tom Fawcett, Nina Mishra:

Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA. AAAI Press 2003, ISBN 1-57735-189-4 - Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofmann:

Hidden Markov Support Vector Machines. 3-10 - Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall:

Learning Distance Functions using Equivalence Relations. 11-18 - Yoram Baram, Ran El-Yaniv, Kobi Luz:

Online Choice of Active Learning Algorithms. 19-26 - Margherita Berardi, Michelangelo Ceci, Floriana Esposito, Donato Malerba:

Learning Logic Programs for Layout Analysis Correction. 27-34 - Jinbo Bi:

Multi-Objective Programming in SVMs. 35-42 - Jinbo Bi, Kristin P. Bennett:

Regression Error Characteristic Curves. 43-50 - Remco R. Bouckaert:

Choosing Between Two Learning Algorithms Based on Calibrated Tests. 51-58 - Klaus Brinker:

Incorporating Diversity in Active Learning with Support Vector Machines. 59-66 - Gavin Brown, Jeremy L. Wyatt:

The Use of the Ambiguity Decomposition in Neural Network Ensemble Learning Methods. 67-74 - Jesús Cerquides, Ramón López de Mántaras:

Tractable Bayesian Learning of Tree Augmented Naive Bayes Models. 75-82 - Vincent Conitzer, Tuomas Sandholm:

AWESOME: A General Multiagent Learning Algorithm that Converges in Self-Play and Learns a Best Response Against Stationary Opponents. 83-90 - Vincent Conitzer, Tuomas Sandholm:

BL-WoLF: A Framework For Loss-Bounded Learnability In Zero-Sum Games. 91-98 - Fábio Gagliardi Cozman, Ira Cohen, Marcelo Cesar Cirelo:

Semi-Supervised Learning of Mixture Models. 99-106 - Chad M. Cumby, Dan Roth:

On Kernel Methods for Relational Learning. 107-114 - Dennis DeCoste, Dominic Mazzoni:

Fast Query-Optimized Kernel Machine Classification Via Incremental Approximate Nearest Support Vectors. 115-122 - Kurt Driessens, Jan Ramon:

Relational Instance Based Regression for Relational Reinforcement Learning. 123-130 - Michael O. Duff:

Design for an Optimal Probe. 131-138 - Michael O. Duff:

Diffusion Approximation for Bayesian Markov Chains. 139-146 - Charles Elkan:

Using the Triangle Inequality to Accelerate k-Means. 147-153 - Yaakov Engel, Shie Mannor, Ron Meir:

Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning. 154-161 - Eyal Even-Dar, Shie Mannor, Yishay Mansour:

Action Elimination and Stopping Conditions for Reinforcement Learning. 162-169 - James Fan, Raymond Lau, Risto Miikkulainen:

Utilizing Domain Knowledge in Neuroevolution. 170-177 - Xiaoli Zhang Fern, Carla E. Brodley:

Boosting Lazy Decision Trees. 178-185 - Xiaoli Zhang Fern, Carla E. Brodley:

Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach. 186-193 - Peter A. Flach:

The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics. 194-201 - Johannes Fürnkranz, Peter A. Flach:

An Analysis of Rule Evaluation Metrics. 202-209 - Ashutosh Garg, Dan Roth:

Margin Distribution and Learning. 210-217 - Peter Geibel, Fritz Wysotzki:

Perceptron Based Learning with Example Dependent and Noisy Costs. 218-225 - Mohammad Ghavamzadeh, Sridhar Mahadevan:

Hierarchical Policy Gradient Algorithms. 226-233 - Thore Graepel:

Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations. 234-241 - Amy Greenwald, Keith Hall:

Correlated Q-Learning. 242-249 - Edward F. Harrington:

Online Ranking/Collaborative Filtering Using the Perceptron Algorithm. 250-257 - Andrew Isaac, Claude Sammut:

Goal-directed Learning to Fly. 258-265 - Manfred Jaeger:

Probabilistic Classifiers and the Concepts They Recognize. 266-273 - David D. Jensen, Jennifer Neville, Michael Hay:

Avoiding Bias when Aggregating Relational Data with Degree Disparity. 274-281 - Rong Jin, Rong Yan, Jian Zhang, Alexander G. Hauptmann:

A Faster Iterative Scaling Algorithm for Conditional Exponential Model. 282-289 - Thorsten Joachims:

Transductive Learning via Spectral Graph Partitioning. 290-297 - Judy Johnson, Kostas Tsioutsiouliklis, C. Lee Giles

:
Evolving Strategies for Focused Web Crawling. 298-305 - Sham M. Kakade, Michael J. Kearns, John Langford:

Exploration in Metric State Spaces. 306-312 - Alexandros Kalousis, Melanie Hilario:

Representational Issues in Meta-Learning. 313-320 - Hisashi Kashima, Koji Tsuda, Akihiro Inokuchi:

Marginalized Kernels Between Labeled Graphs. 321-328 - Samuel Kaski, Jaakko Peltonen:

Informative Discriminant Analysis. 329-336 - William G. Kennedy, Kenneth A. De Jong:

Characteristics of Long-term Learning in Soar and its Application to the Utility Problem. 337-344 - Sergey Kirshner, Sridevi Parise, Padhraic Smyth:

Unsupervised Learning with Permuted Data. 345-352 - Aldebaro Klautau, Nikola Jevtic, Alon Orlitsky:

Discriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers. 353-360 - Risi Kondor, Tony Jebara:

A Kernel Between Sets of Vectors. 361-368 - Clifford Kotnik, Jugal K. Kalita:

The Significance of Temporal-Difference Learning in Self-Play Training TD-Rummy versus EVO-rummy. 369-375 - Krzysztof Krawiec, Bir Bhanu:

Visual Learning by Evolutionary Feature Synthesis. 376-383 - Raghu Krishnapuram, Krishna Prasad Chitrapura, Sachindra Joshi:

Classification of Text Documents Based on Minimum System Entropy. 384-391 - Jeremy Kubica, Andrew W. Moore, David Cohn, Jeff G. Schneider:

Finding Underlying Connections: A Fast Graph-Based Method for Link Analysis and Collaboration Queries. 392-399 - James T. Kwok, Ivor W. Tsang

:
Learning with Idealized Kernels. 400-407 - James T. Kwok, Ivor W. Tsang

:
The Pre-Image Problem in Kernel Methods. 408-415 - Nicolas Lachiche, Peter A. Flach:

Improving Accuracy and Cost of Two-class and Multi-class Probabilistic Classifiers Using ROC Curves. 416-423 - Michail G. Lagoudakis, Ronald Parr:

Reinforcement Learning as Classification: Leveraging Modern Classifiers. 424-431 - Pat Langley, Dileep George, Stephen D. Bay, Kazumi Saito:

Robust Induction of Process Models from Time-Series Data. 432-439 - Adam Laud, Gerald DeJong:

The Influence of Reward on the Speed of Reinforcement Learning: An Analysis of Shaping. 440-447 - Wee Sun Lee, Bing Liu:

Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression. 448-455 - Jure Leskovec, John Shawe-Taylor:

Linear Programming Boosting for Uneven Datasets. 456-463 - Cong Li

, Ji-Rong Wen, Hang Li:
Text Classification Using Stochastic Keyword Generation. 464-471 - Fan Li, Yiming Yang:

A Loss Function Analysis for Classification Methods in Text Categorization. 472-479 - Charles X. Ling, Robert J. Yan:

Decision Tree with Better Ranking. 480-487 - Tao Liu, Shengping Liu, Zheng Chen, Wei-Ying Ma:

An Evaluation on Feature Selection for Text Clustering. 488-495 - Qing Lu, Lise Getoor:

Link-based Classification. 496-503 - Hiroshi Mamitsuka:

Hierarchical Latent Knowledge Analysis for Co-occurrence Data. 504-511 - Shie Mannor, Reuven Y. Rubinstein, Yohai Gat:

The Cross Entropy Method for Fast Policy Search. 512-519 - Mario Marchand, Mohak Shah, John Shawe-Taylor, Marina Sokolova:

The Set Covering Machine with Data-Dependent Half-Spaces. 520-527 - Amy McGovern, David D. Jensen:

Identifying Predictive Structures in Relational Data Using Multiple Instance Learning. 528-535 - H. Brendan McMahan, Geoffrey J. Gordon, Avrim Blum:

Planning in the Presence of Cost Functions Controlled by an Adversary. 536-543 - Chris Mesterharm:

Using Linear-threshold Algorithms to Combine Multi-class Sub-experts. 544-551 - Andrew W. Moore, Weng-Keen Wong:

Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning. 552-559 - Rémi Munos:

Error Bounds for Approximate Policy Iteration. 560-567 - Cheng Soon Ong, Alexander J. Smola:

Machine Learning with Hyperkernels. 568-575 - Santiago Ontañón, Enric Plaza:

Justification-based Multiagent Learning. 576-583 - Dmitry Pavlov, Alexandrin Popescul, David M. Pennock, Lyle H. Ungar:

Mixtures of Conditional Maximum Entropy Models. 584-591 - Simon Perkins, James Theiler:

Online Feature Selection using Grafting. 592-599 - Reid B. Porter, Damian Eads, Don R. Hush, James Theiler:

Weighted Order Statistic Classifiers with Large Rank-Order Margin. 600-607 - Balaraman Ravindran, Andrew G. Barto:

Relativized Options: Choosing the Right Transformation. 608-615 - Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger:

Tackling the Poor Assumptions of Naive Bayes Text Classifiers. 616-623 - Matthew Richardson, Pedro M. Domingos:

Learning with Knowledge from Multiple Experts. 624-631 - François Rivest, Doina Precup:

Combining TD-learning with Cascade-correlation Networks. 632-639 - Roman Rosipal, Leonard J. Trejo, Bryan Matthews:

Kernel PLS-SVC for Linear and Nonlinear Classification. 640-647 - Ulrich Rückert, Stefan Kramer:

Stochastic Local Search in k-Term DNF Learning. 648-655 - Stuart Russell, Andrew Zimdars:

Q-Decomposition for Reinforcement Learning Agents. 656-663 - Ruslan Salakhutdinov, Sam T. Roweis:

Adaptive Overrelaxed Bound Optimization Methods. 664-671 - Ruslan Salakhutdinov, Sam T. Roweis, Zoubin Ghahramani:

Optimization with EM and Expectation-Conjugate-Gradient. 672-679 - Ralf Schoknecht, Artur Merke:

TD(0) Converges Provably Faster than the Residual Gradient Algorithm. 680-687 - Marc Sebban, Jean-Christophe Janodet:

On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data. 688-695 - Lawrence Shih, Jason D. M. Rennie, Yu-Han Chang, David R. Karger:

Text Bundling: Statistics Based Data-Reduction. 696-703 - Luo Si, Rong Jin:

Flexible Mixture Model for Collaborative Filtering. 704-711 - Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, Peter Stone:

Learning Predictive State Representations. 712-719 - Nathan Srebro, Tommi S. Jaakkola:

Weighted Low-Rank Approximations. 720-727 - Jeff L. Stimpson, Michael A. Goodrich:

Learning To Cooperate in a Social Dilemma: A Satisficing Approach to Bargaining. 728-735 - Malcolm J. A. Strens:

Evolutionary MCMC Sampling and Optimization in Discrete Spaces. 736-743 - Benjamin Taskar, Ming Fai Wong, Daphne Koller:

Learning on the Test Data: Leveraging Unseen Features. 744-751 - Giorgio Valentini, Thomas G. Dietterich:

Low Bias Bagged Support Vector Machines. 752-759 - S. V. N. Vishwanathan, Alexander J. Smola, M. Narasimha Murty:

SimpleSVM. 760-767 - Vladimir Vovk, Ilia Nouretdinov, Alex Gammerman:

Testing Exchangeability On-Line. 768-775 - Xin Wang, Thomas G. Dietterich:

Model-based Policy Gradient Reinforcement Learning. 776-783 - Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:

Learning Mixture Models with the Latent Maximum Entropy Principle. 784-791 - Eric Wiewiora, Garrison W. Cottrell, Charles Elkan:

Principled Methods for Advising Reinforcement Learning Agents. 792-799 - Elly Winner, Manuela M. Veloso:

DISTILL: Learning Domain-Specific Planners by Example. 800-807 - Weng-Keen Wong, Andrew W. Moore, Gregory F. Cooper, Michael M. Wagner:

Bayesian Network Anomaly Pattern Detection for Disease Outbreaks. 808-815 - Gang Wu, Edward Y. Chang:

Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning. 816-823 - Xiaoyun Wu, Rohini K. Srihari:

New í-Support Vector Machines and their Sequential Minimal Optimization. 824-831 - Takeshi Yamada, Kazumi Saito, Naonori Ueda:

Cross-Entropy Directed Embedding of Network Data. 832-839 - Yuu Yamada, Einoshin Suzuki, Hideto Yokoi, Katsuhiko Takabayashi:

Decision-tree Induction from Time-series Data Based on a Standard-example Split Test. 840-847 - Lian Yan, Robert H. Dodier, Michael Mozer, Richard H. Wolniewicz:

Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic. 848-855 - Lei Yu, Huan Liu:

Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. 856-863 - Hongyuan Zha, Zhenyue Zhang:

Isometric Embedding and Continuum ISOMAP. 864-871 - Zhihua Zhang:

Learning Metrics via Discriminant Kernels and Multidimensional Scaling: Toward Expected Euclidean Representation. 872-879 - Jun Zhang, Vasant G. Honavar:

Learning from Attribute Value Taxonomies and Partially Specified Instances. 880-887 - Jian Zhang, Rong Jin, Yiming Yang, Alexander G. Hauptmann:

Modified Logistic Regression: An Approximation to SVM and Its Applications in Large-Scale Text Categorization. 888-895 - Yi Zhang, Wei Xu, James P. Callan:

Exploration and Exploitation in Adaptive Filtering Based on Bayesian Active Learning. 896-903 - Tong Zhang, Bin Yu:

On the Convergence of Boosting Procedures. 904-911 - Xiaojin Zhu, Zoubin Ghahramani, John D. Lafferty:

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. 912-919 - Xingquan Zhu, Xindong Wu, Qijun Chen:

Eliminating Class Noise in Large Datasets. 920-927 - Martin Zinkevich:

Online Convex Programming and Generalized Infinitesimal Gradient Ascent. 928-936

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














