


default search action
AutoML 2024: Paris, France
- Katharina Eggensperger, Roman Garnett, Joaquin Vanschoren, Marius Lindauer, Jacob R. Gardner:

International Conference on Automated Machine Learning, 9-12 September 2024, Sorbonne Université, Paris, France. Proceedings of Machine Learning Research 256, PMLR 2024 - Riccardo Grazzi, Julien Niklas Siems, Simon Schrodi, Thomas Brox, Frank Hutter:

Is Mamba Capable of In-Context Learning? 1/1-26 - Yue Zhao, Leman Akoglu:

HPOD: Hyperparameter Optimization for Unsupervised Outlier Detection. 2/1-24 - Vishak Prasad C., Colin White, Sibasis Nayak, Paarth Jain, Aziz Shameem, Prateek Garg, Ganesh Ramakrishnan:

Speeding up NAS with Adaptive Subset Selection. 3/1-23 - Konstantinos Paraschakis, Andrea Castellani, Giorgos Borboudakis, Ioannis Tsamardinos:

Confidence Interval Estimation of Predictive Performance in the Context of AutoML. 4/1-14 - Timotée Ly-Manson, Mathieu Léonardon, Abdeldjalil Aïssa-El-Bey, Ghouthi Boukli Hacene, Lukas Mauch:

Analyzing Few-Shot Neural Architecture Search in a Metric-Driven Framework. 5/1-33 - Jordan Dotzel, Gang Wu, Andrew Li, Muhammad Umar, Yun Ni, Mohamed S. Abdelfattah, Zhiru Zhang, Liqun Cheng, Martin G. Dixon, Norman P. Jouppi, Quoc V. Le, Sheng Li:

FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search. 6/1-26 - Adri Gomez Martin, Mónica Abella, Manuel Desco:

Improving Transfer Learning by means of Ensemble Learning and Swarm Intelligence-based Neuroevolution. 7/1-25 - Mateo Avila Pava, René Groh, Andreas M. Kist:

Sequence Alignment-based Similarity Metric in Evolutionary Neural Architecture Search. 8/1-21 - Edward Bergman, Lennart Purucker, Frank Hutter:

Don't Waste Your Time: Early Stopping Cross-Validation. 9/1-31 - Jonas Seng, Fabian Kalter, Zhongjie Yu, Fabrizio Ventola, Kristian Kersting:

Bi-Level One-Shot Architecture Search for Probabilistic Time Series Forecasting. 10/1-20 - Nilesh Verma, Albert Bifet, Bernhard Pfahringer, Maroua Bahri:

ASML: A Scalable and Efficient AutoML Solution for Data Streams. 11/1-26 - Rhea Sanjay Sukthanker, Arjun Krishnakumar, Mahmoud Safari, Frank Hutter:

Weight-Entanglement Meets Gradient-Based Neural Architecture Search. 12/1-25 - Martin Hirzel, Kiran Kate, Louis Mandel, Avraham Shinnar:

Training and Cross-Validating Machine Learning Pipelines with Limited Memory. 13/1-25 - Shuhei Watanabe, Neeratyoy Mallik, Edward Bergman, Frank Hutter:

Fast Benchmarking of Asynchronous Multi-Fidelity Optimization on Zero-Cost Benchmarks. 14/1-18 - Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Cuixiong Hu, Katrin Kirchhoff, George Karypis:

AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models. 15/1-35 - Julie Keisler, Sandra Claudel, Gilles Cabriel, Margaux Brégère:

Automated Deep Learning for load forecasting. 16/1-28 - Luca Piras, Joan Albert Erráez Castelltort, Jordi Casals Grifell, Xavier de Juan Pulido, Cirus Iniesta, Marina Rosell Murillo, Cristina Soler Arenys:

Introducing HoNCAML: Holistic No-Code Auto Machine Learning. 17/1-27 - Gresa Shala, Sebastian Pineda-Arango, André Biedenkapp, Frank Hutter, Josif Grabocka:

HPO-RL-Bench: A Zero-Cost Benchmark for HPO in Reinforcement Learning. 18/1-31 - David Salinas, Nick Erickson:

TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications. 19/1-30

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














